Expected returns, risk premia, and volatility surfaces implicit in option market prices

António Câmara

Tim Krehbiel

Weiping Li

tlk@okstate.edu

Oklahoma State University

Extension of current literature

A pure exchange economy extending Rubinstein (1976) illustrating how the jump-diffusion option pricing model of Merton (1976) is altered when jumps are correlated with diffusive risks.

- Covariance of diffusive pricing kernel with jumps of the pricing kernel, $\sigma_{cy_c}\sqrt{T}$
- Covariance of diffusive pricing kernel with price jumps, $\sigma_{cy}\sqrt{T}$

Extension of current literature cont.

- Covariance of diffusive price with jumps of pricing kernel, $\sigma_{sy_c}\sqrt{T}$
- Covariance of diffusive price with price jumps, $\sigma_{sy}\sqrt{T}$

Time T Consumption and Price

$$C_{T} = exp \left(ln(C_{0}) + \mu_{c}T - \frac{\sigma_{c}^{2}}{2}T + \sigma_{c}B_{c}(T) + \sum_{i=1}^{N(T)} Y_{c,i} \right),$$

$$S_{T} = exp \left(ln(S_{0}) + \mu T - \frac{\sigma^{2}}{2}T + \sigma B(T) + \sum_{i=1}^{N(T)} Y_{i} \right)$$

Mean and covariance structure

$$\begin{bmatrix} \sigma_c B_c(T) \\ \sigma B(T) \\ Y_{c,i} \\ Y_i \end{bmatrix} \sim N \begin{bmatrix} 0 \\ 0 \\ \alpha_c \\ \alpha \end{bmatrix}, \begin{bmatrix} \sigma_c^2 T & \sigma_{cs} T & \sigma_{cy_c} \sqrt{T} & \sigma_{cy} \sqrt{T} \\ \sigma^2 T & \sigma_{sy_c} \sqrt{T} & \sigma_{sy} \sqrt{T} \\ \sigma^2 T & \sigma_{sy_c} \sqrt{T} & \sigma_{sy} \sqrt{T} \\ \sigma^2 T & \sigma_{sy_c} \sqrt{T} & \sigma_{sy} \sqrt{T} \\ \sigma^2 T & \sigma_{sy_c} \sqrt{T} & \sigma_{sy_c} \sqrt{T} \\ \sigma^2 T & \sigma_{sy_c} \sqrt{T} \\ \sigma^2$$

Euler Equation

$$P_0 = E\left[\frac{U'(C_T)}{U'(C_0)}\phi(S_T) \mid \mathcal{F}_0\right]$$

The equilibrium price of an arbitrary asset with payoff $\phi\left(S_{T}\right)$ at time T.

Power Utility

$$U_t(C_t) = \rho^t C_t^{1-b} / (1-b)$$

Power utility function of the representative agent

- ρ is the time discount factor
- b is the coefficient of proportional risk aversion.

Pricing Kernel

$$\psi(C) = \frac{U'(C_T)}{U'(C_0)} = \rho^T \left(\frac{C_T}{C_0}\right)^{-b}$$

Representative agent's marginal rate of substitution C_T for C_0 with power utility

Pricing Kernel

$$\psi(C) = exp \left(ln(\rho)T - b\mu_c T + b\frac{\sigma_c^2}{2}T - b\sigma_c B_c(T) + \sum_{i=1}^{N(T)} (-bY_{c,i}) \right)$$

Pricing kernel given assumed dynamics and power utility

CCAPM

$$r = \mu - b\sigma_{cs} + \lambda \left[e^{-b\alpha_c + \frac{b^2}{2}\gamma_c^2 + b^2\sigma_{cyc}\sqrt{T} + \alpha + \frac{\gamma^2}{2} + \sigma_{sy}\sqrt{T} - b\sigma_{syc}\sqrt{T} - b\sigma_{cy}\sqrt{T} - bv_{syc}\sqrt{T} - b\sigma_{cy}\sqrt{T} - bv_{syc}\sqrt{T} \right]$$

$$-\lambda \left[e^{-b\alpha_c + \frac{b^2}{2}\gamma_c^2 + b^2\sigma_{cy_c}\sqrt{T}} - 1 \right]$$

Linear Approximations

$$E(R_S(T)) = rT + EJRP(T) + EDRP(T)$$

where:

(1)
$$E(R_S(T)) = \mu T + \lambda T [e^{\alpha + 0.5\gamma^2 + \sigma_{sy}\sqrt{T}} - 1]$$

(2)
$$EJRP(T) = -\lambda T[e^{-bv_{sc}-b\sigma_{cy}\sqrt{T}}-1]$$

(3)
$$EDRP(T) = b\sigma_{cs}T - \lambda T[e^{-b\sigma_{syc}\sqrt{T}} - 1]$$

GJD Option pricing model

$$P_{c} = \sum_{n=0}^{\infty} \frac{(\lambda'T)^{n} e^{-\lambda'T}}{n!} \left(S_{0} N(d_{1}(n)) - K e^{-r_{n}T} N(d_{2}(n)) \right)$$

GJD Continued

$$d_{1}(n) = \frac{\ln\left(\frac{S_{0}}{K}\right) + \left(r_{n} + \frac{\sigma_{n}^{2}}{2}\right)T}{\sigma_{n}\sqrt{T}}, \qquad d_{2}(n) = d_{1}(n) - \sigma_{n}\sqrt{T},$$

$$\lambda' = \lambda\beta_{1},$$

$$\sigma_{n}^{2} = Max\left\{n\gamma^{2}/T + 2n\sigma_{sy}/\sqrt{T} + \sigma^{2}, 0\right\},$$

$$r_{n} = r + \lambda\left(\beta_{2} - 1\right) - \lambda\left(\beta_{1} - 1\right) + \frac{n}{T}\ln\left(\frac{\beta_{1}}{\beta_{2}}\right),$$

$$\beta_{1} = e^{-b\alpha_{c} + \frac{b^{2}}{2}\gamma_{c}^{2} + b^{2}\sigma_{cyc}\sqrt{T} + \alpha + \frac{\gamma^{2}}{2} + \sigma_{sy}\sqrt{T} - b\sigma_{syc}\sqrt{T} - b\sigma_{cy}\sqrt{T} - bv_{sc}},$$

$$\beta_{2} = e^{-b\alpha_{c} + \frac{b^{2}}{2}\gamma_{c}^{2} + b^{2}\sigma_{cyc}\sqrt{T}}.$$

Methodology

- Non-parametric test of difference from zero of median GJD implied parameter values
- Best bid/offer quote mid-point reported by OptionMetrics.
- Select GJD implied parameter values that minimize sum-of-squared price errors for observation date.

Data

- Non-overlapping sample call & put S&P 500 index option quotes
- One-month option quotes observed one-month prior to expiration
- 6,430 option quotes from 124 observation dates January 1996 - April 2006
- Data screens; quote midpoint > \$3/8, positive volume, open interest, no-arbitrage boundaries.

GJD Implied Parameter Values

Equilibrium pricing by substitution methodology yields GJD implied parameter values of actual/objective distributions

- Aggregate consumption process
- Mean and covariance structure of uncertainty in aggregate consumption and stock price
- Implied parameter values used to produce estimates of risk premia.

$$\sigma_{sy_c}\sqrt{T} < 0$$

Implied covariance between diffusive price level and price jumps

- Reduces $E(R_S(T))$
- $ullet E(R_S(T))$ a nonlinear function of T
- Non-monotonic term structure of Black-Scholes implied volatilities.

Estimates of EJRP

- Pan (2002) 18.4%
- Eraker (2004) 6%
- Broadie, Chernov, Johannes (2007) 2-4%
- Santa Clara, Yan (2006) 6.9%

$$b\sigma_{cy}\sqrt{T} > 0$$

Jump risk premia due to covariance between diffusive price kernel and price jumps

- Increases EJRP 6.8% to 12.1%
- EJRP a nonlinear function of T
- Produces sneers or slope of the Black-Scholes implied volatility surface.

$$b\sigma_{sy_c}\sqrt{T} > 0$$

Covariance between diffusive return and jumps in pricing kernel

- Increases EDRP
- EDRP a nonlinear function of T.

Jump Intensity λ

 $\hat{\lambda}$, $\hat{\mu}$, $\hat{\alpha}$ can be used to estimate time till market crash implied by GJD parameter values

- $d \ln(S) < -10\% \frac{1}{3.03} \text{ years}$
- $-d \ln(S) < -20\% \frac{1}{24.76}$ years

Santa Clara and Yan (2006)

 $-d \ln(S) < -9.8\% \, \frac{1}{1.26} \, {
m years}$

Preference parameter, b

Coefficient of proportional risk aversion

- Median GJD model implied b = 6.56
- Bliss and Panigirtzoglou (2002) 3.85